Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.351
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2322127121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568978

RESUMO

Soil moisture (SM) is essential for sustaining services from Earth's critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China's monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth (P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were -8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.

2.
J Hazard Mater ; 470: 134176, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569347

RESUMO

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Assuntos
Biodegradação Ambiental , Microbiota , Microplásticos , Poliésteres , Microbiologia do Solo , Poluentes do Solo , Poliésteres/metabolismo , Poliésteres/química , Microplásticos/toxicidade , Poluentes do Solo/metabolismo , Polietileno/química , Carbono/química , Plásticos Biodegradáveis/química , Bactérias/metabolismo , Bactérias/genética , Solo/química
3.
Chemosphere ; 357: 141865, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570047

RESUMO

Agriculture is vital to human life and economic development even though it may have a detrimental influence on soil quality. Agricultural activities can deteriorate the soil quality, endangers the ecosystem health and functioning, food safety, and human health. To resolve the problem of soil degradation, alternative soil conditioners such as wood ash are being explored for their potential to improve soil-plant systems. This study provides an overview of the production, properties, and effects of wood ash on soil properties, crop productivity, and environmental remediation. A comprehensive search of relevant databases was conducted in order to locate and assess original research publications on the use of wood ash in agricultural and environmental management. According to the findings, wood ash, a byproduct of burning wood, may improve the structure, water-holding capacity, nutrient availability, and buffering capacity of soil as well as other physico-chemical, and biological attributes of soil. Wood ash has also been shown to increase agricultural crop yields and help with the remediation of polluted regions. Wood ash treatment, however, has been linked to several adverse effects, such as increased trace element concentrations and altered microbial activity. The examination found that wood ash could be a promising material to be used as soil conditioner and an alternative supply of nutrients for agricultural soils, while, wood ash contributes to soil improvement and environmental remediation, highlighting its potential as a sustainable solution for addressing soil degradation and promoting environmental sustainability in agricultural systems.

4.
J Exp Bot ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661441

RESUMO

We describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0 to 5.0 µm) for CPW was observed in maize germplasm. The functional-structural model RootSlice predicts that increasing CPW from 2 to 4 µm is associated with ca. 15% reduction in root cortical cytoplasmic volume, respiration rate, and nitrogen content. Analysis of genotypes with contrasting CPW grown with and without water stress in the field confirms that increased CPW is correlated with ca. 32 to 42% decrease in root respiration. Under water stress in the field, increased CPW is correlated with 125% increased stomatal conductance, 325% increased leaf CO2 assimilation rate, 73 to 78% increased shoot biomass, and 92 to 108% increased yield. CPW was correlated with leaf mesophyll midrib parenchyma wall width, indicating pleiotropy. GWAS analysis identified candidate genes underlying CPW. OpenSimRoot modeling predicts that a reduction in root respiration due to increased CPW would also benefit maize growth under suboptimal nitrogen, which requires empirical testing. We propose CPW as a new phene that has utility under edaphic stress meriting further investigation.

5.
Environ Toxicol Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661489

RESUMO

Pesticide additives (PAs) are auxiliary ingredients added to the pesticide manufacturing and use processes, constituting 1% to 99% of the pesticide and often composed of benzene and chlorinated hydrocarbons. We selected three typical PAs, toluene, chloroform, and trichloroethylene, to evaluate their retention function toxicity and ecological risk in soil. Soil immobilization techniques and aquatic model organisms were used to demonstrate the effectiveness of the immobilized soil method to determine the ecological risk of chemicals. The 48-h median lethal concentrations of toluene, chloroform, and trichloroethylene alone in spiked soil on Daphnia magna were 10.5, 2.3, and 1.1 mg/L (medium, high, and high toxicity, respectively). The toxicity of the three-PA mixtures showed an antagonistic effect. The risk levels of toluene, chloroform, and trichloroethylene in the soil were evaluated as moderate to high, low to high, and high risk, respectively. The toxicity of two pesticide-contaminated sites in the Yangtze River Delta before and after remediation was successfully evaluated by immobilized soil technology. The toxicity of two soil sampling points was reduced from medium toxic to low toxic and no toxic, respectively, after remediation. The results of our study give a rationale for and prove the validity of the aquatic model organisms and soil immobilization techniques in assessing the soil retention functions toxicity of PAs. Environ Toxicol Chem 2024;00:1-13. © 2024 SETAC.

6.
Sci Total Environ ; : 172724, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663601

RESUMO

Soil protozoa, as predators of microbial communities, profoundly influence multifunctionality of soils. Understanding the relationship between soil protozoa and soil multifunctionality (SMF) is crucial to unraveling the driving mechanisms of SMF. However, this relationship remains unclear, particularly in grassland ecosystems that are experiencing degradation. By employing 18S rRNA gene sequencing and network analysis, we examined the diversity, composition, and network patterns of the soil protozoan community along a well-characterized gradient of grassland degradation at four alpine sites, including two alpine meadows (Cuona and Jiuzhi) and two alpine steppes (Shuanghu and Gonghe) on the Qinghai-Tibetan Plateau. Our findings showed that grassland degradation decreased SMF for 1-2 times in all four sites but increased soil protozoan diversity (Shannon index) for 13.82-298.01 % in alpine steppes. Grassland degradation-induced changes in soil protozoan composition, particularly to the Intramacronucleata with a large body size, were consistently observed across all four sites. The enhancing network complexity (average degree), stability (robustness), and cooperative relationships (positive correlation) are the responses of protozoa to grassland degradation. Further analyses revealed that the increased network complexity and stability led to a decrease in SMF by affecting microbial biomass. Overall, protozoa increase their diversity and strengthen their cooperative relationships to resist grassland degradation, and emphasize the critical role of protozoan network complexity and stability in regulating SMF. Therefore, not only protozoan diversity and composition but also their interactions should be considered in evaluating SMF responses to grassland degradation, which has important implications for predicting changes in soil function under future scenarios of anthropogenic change.

7.
Sci Total Environ ; : 172609, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663623

RESUMO

Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.

8.
Environ Res ; : 118988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663666

RESUMO

China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.

9.
Data Brief ; 54: 110398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665157

RESUMO

The data set describes variables collected from a French (N 48.84°, E 1.95°) field trial, over a twelve-year period (2009-2020), in which four innovative cropping systems designed to reach multiple environmental and production goals were assessed. The four cropping systems were designed with new combinations of agricultural practices; they differed in terms of pesticide uses, nitrogen inputs, tillage practices, and crop sequences. Both biotic and abiotic variables were measured. In a previous data paper, we focused on nitrogen fluxes collected from two systems, over eight years (2009-2016). In the present one, we enlarge the scope of the variables, including more crop descriptions and environmental indicators, from all four systems, and over a longer period (2009-2020). The biotic data are: growth stages; aboveground plant nitrogen content and biomass collected at different growth stages, depending on the species; yield components of all the crops; and yield harvested with a combine machine. No weed, crop disease, and pest data are described. The abiotic data are physical and chemical properties of the soil (i.e. texture, calcium carbonate content, pH, organic carbon contents, and nitrogen contents) collected at different assessment periods. All agricultural practices, and climate were regularly recorded, and the treatment frequency indexes and the energy consumptions were computed. These data could be used for benchmarking, to design low-input systems, to improve models for parameterization and validation, and to increase the predictive accuracy of models of crop growth and development, specifically for orphan species such as linseed, faba bean or hemp, and for soil carbon and soil nitrogen fluxes in various conditions.

10.
Plant Soil ; 498(1-2): 325-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665878

RESUMO

Background and aims: Partitioning the measured net ecosystem carbon dioxide (CO2) exchange into gross primary productivity (GPP) and ecosystem respiration remains a challenge, which scientists try to tackle by using the properties of the trace gas carbonyl sulfide (COS). Its similar pathway into and within the leaf makes it a potential photosynthesis proxy. The application of COS as an effective proxy depends, among other things, on a robust inventory of potential COS sinks and sources within ecosystems. While the soil received some attention during the last couple of years, the role of plant roots is mostly unknown. In our study, we investigated the effects of live roots on the soil COS exchange. Methods: An experimental setup was devised to measure the soil and the belowground plant parts of young beech trees observed over the course of 9 months. Results: During the growing season, COS emissions were significantly lower when roots were present compared to chambers only containing soil, while prior to the growing season, with photosynthetically inactive trees, the presence of roots increased COS emissions. The difference in the COS flux between root-influenced and uninfluenced soil was fairly constant within each month, with diurnal variations in the COS flux driven primarily by soil temperature changes rather than the presence or absence of roots. Conclusion: While the mechanisms by which roots influence the COS exchange are largely unknown, their contribution to the overall ground surface COS exchange should not be neglected when quantifying the soil COS exchange. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06438-0.

11.
Data Brief ; 54: 110385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623548

RESUMO

The dataset provided details on how tillage methods and nutrient management impacted the productivity of the four crops (mustard>mungbean>Transplanting (T.) aus >Transplanting (T.) aman) cropping system and the overall soil health. The specific tillage techniques examined were minimum tillage (MT), conventional tillage (CT), and deep tillage (DT). Regarding nutrient management, NM1 utilized 100 % soil test-based (STB) fertilization following fertilizer gradient generation (FRG); NM2 applied 125 % of STB after FRG-2018; NM3 consisted of 100 % STB (with 80 % from chemical fertilizers and 20 % from cow dung); and NM4 relied on native fertility without any fertilization. Over three consecutive seasonal years (2018-19, 2019-20, and 2020-21), twelve treatments were replicated three times following a factorial totally randomized design. The comparative analysis of crop yield, rice equivalent yield, system productivity and production efficiency indicated superior performance of MT over both CT and DT. Furthermore, in relation to agricultural productivity metrics, the application of the nutrition package NM3 demonstrated performance levels exceeding the average. The adoption of MT and the incorporation of the NM3 nutrition package led to notable advancements in organic matter, field capacity, microbial biomass nitrogen, microbial biomass carbon and soil nutrient levels (N, P, K, S, Zn, and B). Consequently, the synthesis of the NM3 with MT is posited as a strategic approach for soil enhancement and the augmentation of crop productivity.

12.
Environ Pollut ; 350: 124014, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642792

RESUMO

Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.

13.
IJID Reg ; 11: 100352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634069

RESUMO

Objectives: Kenya has implemented a national school-based deworming program, which has led to substantial decline in the prevalence of soil-transmitted helminths (STHs), although some pockets of infections remain. To effectively design an STH control program that leads to significant reductions of Trichuris trichiura, there is a need to understand the drivers of persistent infection despite ongoing treatment programs. Methods: This study was conducted between July and September 2019 at the south coast of Kenya, using a two-stage sampling design. First, a school-based cross-sectional survey was conducted in 2265 randomly selected school children from selected schools in areas known to be endemic for T. trichiura. After this, we conducted a nested case-control study wherein all children positive for T. trichiura (142) were matched to 148 negative controls based on age and village. A household survey was then conducted with all household members of cases and controls. In addition, a subsample of 116 children found to be infected with T. trichiura were followed up to assess the efficacy of albendazole at day 21 post-treatment. The predictors of presence of T. trichiura were investigated through multilevel logistic regression, considering clustering of infection. Results: Overall, 34.4% of the children were infected with at least one STH species; T. trichiura was the most common (28.3%), 89.1% of those with T. trichiura had light-intensity infections. The prevalence of T. trichiura was significantly higher in male children and was positively associated with younger age and number of people infected with T. trichiura in a household. The parasitological cure rate and egg reduction rate of T. trichiura were 35% and 51%, respectively. Other STHs identified were hookworm (9.6%) and Ascaris lumbricoides (5.7%). Conclusions: T. trichiura remains a significant public health challenge in the study area with albendazole treatment efficacy against the parasite, remaining lower than the World Health Organization-recommended thresholds. Because of the observed focal transmission of T. trichiura in the current area, control efforts tailored to local conditions and targeting lower implementation units should be used to achieve optimal results on transmission.

14.
Cell Commun Signal ; 22(1): 232, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637851

RESUMO

Metastasis poses a major challenge in colorectal cancer (CRC) treatment and remains a primary cause of mortality among patients with CRC. Recent investigations have elucidated the involvement of disrupted gut microbiota homeostasis in various facets of CRC metastasis, exerting a pivotal influence in shaping the metastatic microenvironment, triggering epithelial-mesenchymal transition (EMT), and so on. Moreover, therapeutic interventions targeting the gut microbiota demonstrate promise in enhancing the efficacy of conventional treatments for metastatic CRC (mCRC), presenting novel avenues for mCRC clinical management. Grounded in the "seed and soil" hypothesis, this review consolidates insights into the mechanisms by which imbalanced gut microbiota promotes mCRC and highlights recent strides in leveraging gut microbiota modulation for the clinical prevention and treatment of mCRC. Emphasis is placed on the considerable potential of manipulating gut microbiota within clinical settings for managing mCRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/patologia , Microambiente Tumoral
15.
Sci Total Environ ; 929: 172228, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599401

RESUMO

Deep soil water (DSW) plays a pivotal role in tree growth, susceptibility to drought-induced mortality, and belowground carbon and nutrient cycling. Assessing DSW depletion is essential for evaluating the resilience and sustainability of planted forests. But, due to the poor accessibility of deep soil layers, little is known about large scale DSW depletion. In this study, we leverage the concept that "plants are reliable indicators of deep soil water" to estimate DSW depletion in planted forests within the arid and semi-arid regions of the Chinese Loess Plateau (CLP). Our approach involves establishing a model that correlates forest age with DSW depletion. We then employ this model to estimate DSW depletion across the region, utilizing readily available data on the distribution of forest age and utilize the boundary models to consider the variability of DSW depletion estimated with forest age. Our results indicate that the model effectively estimates DSW depletion in planted forests, demonstrating a strong fit with an R2 of 0.71 and a low root mean square error (RMSE) of 332 mm. Notably, a substantial portion of the planted forest areas on the CLP has experienced DSW depletion from 800 mm to 1600 mm, and totaling 2.41 × 1010 m3 DSW depletion from 1995 to 2020 based on the general model. However, the available DSW in the existing planted forests on the CLP is estimated at only 1.73 × 1010 m3 by 2038. This suggests that there is potential risks and unsustainability for further afforestation efforts and carbon sequestration on the CLP under the current continuous afforestation measures. Our study holds significant implications for sustainable regional ecological management and quantifying water resources for carbon trading through afforestation.

16.
Sci Total Environ ; 929: 172478, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621545

RESUMO

Biostimulation by supplementing of nitrogen and phosphorus nutrients is a common strategy for remediation of petroleum-polluted soils. However, the dosage influence of exogenous nitrogen or phosphorus on petroleum hydrocarbon removal and soil ecotoxicity and microbial function remain unclear. In this study, we compared the efficiencies of hydrocarbon degradation and ecotoxicity control by experiment conducted over addition of inorganic nitrogen or phosphorus at C/N ratio of 100/10, C/N/P ratio of 100/10/1, and C/P ratio of 100/1 in a heavily petroleum-contaminated loessal soil with 12,320 mg/kg of total petroleum hydrocarbon (TPH) content. A 90-day incubation study revealed that low-dose of phosphorus addition with the C/P ratio of 100/1 promoted hydrocarbon degradation and reduced soil ecotoxicity. Microbial community composition analysis suggested that phosphorus addition enriched hydrocarbon degrader Gordonia and Mycolicibacterium genus. The key enzymes EC 5.3.3.8, EC 6.2.1.20 and EC 6.4.1.1 which referred to degradation of long-chain hydrocarbons, unsaturated fatty acids and pyruvate metabolism were abundance by phosphorus supplementation. While nitrogen addition at C/N ratio of 100/10 or C/N/P ratio of 100/10/1 inhibited hydrocarbon degradation and exacerbated soil ecotoxicity due to promoting denitrification and coupling reactions with hydrocarbons. Our results suggested that low-dose phosphorus addition served as a favorable strategy to promote crude oil remediation and ecotoxicity risk control in heavily petroleum-contaminated soil. Hence, the application of suitable doses of exogenous biostimulants is an efficient approach to restore the ecological functions of organically contaminated soils.

17.
GM Crops Food ; 15(1): 1-15, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38625676

RESUMO

Poplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.


Assuntos
Populus , Rizosfera , Biomassa , Endopeptidases , Nitrogênio , Populus/genética , Solo
18.
Environ Res ; 252(Pt 2): 118949, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631472

RESUMO

Anthropogenic activities are leaving lots of chemical footprints on the soil. It alters the physiochemical characteristics of the soil thereby modifying the natural soil microbiome. The prevalence of antimicrobial-resistance microbes in polluted soil has gained attention due to its obvious public health risks. This study focused on assessing the prevalence and distribution of antibiotic-resistance genes in polluted soil ecosystems impacted by industrial enterprises in southern Russia. Metagenomic analysis was conducted on soil samples collected from polluted sites using various approaches, and the prevalence of antibiotic-resistance genes was investigated. The results revealed that efflux-encoding pump sequences were the most widely represented group of genes, while genes whose products replaced antibiotic targets were less represented. The level of soil contamination increased, and there was an increase in the total number of antibiotic-resistance genes in proteobacteria, but a decrease in actinobacteria. The study proposed an optimal mechanism for processing metagenomic data in polluted soil ecosystems, which involves mapping raw reads by the KMA method, followed by a detailed study of specific genes. The study's conclusions provide valuable insights into the prevalence and distribution of antibiotic-resistance genes in polluted soils and have been illustrated in heat maps.

19.
Sci Rep ; 14(1): 8971, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637594

RESUMO

Elevated levels of metal(loid)s in soil may pose potential threats to the ecosystem and can be harmful for human health. The concentrations of As, Cd, Pb, Cr and Ni were determined in agricultural soil collected from 45 pistachio orchards around Feizabad city, Khorasan Razavi province, Iran using ICP-OES. Also, soil pollution indices including contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo) were evaluated. In addition, non-carcinogenic and carcinogenic risk indices were estimated. The mean concentrations of metal(loid)s were in the order of Ni = 466.256 > Cr = 120.848 > Pb = 12.009 > As = 5.486 > Cd = 0.394 mg/kg. Concentrations of As, Cd and Pb in the soil samples were within their respective permissible limits set by World Health Organization (WHO). But concentrations of Cr and Ni in 84.4 and 100% of the samples, respectively exceeded the WHO allowable limits. The CF, PLI and Igeo showed that soil of some of the pistachio orchards was contaminated with some metals. The possible sources of the metals in the soil are application of pesticides, chemical fertilizers, manures as well as irrigation water. Hazard quotient (HQ) ad Hazard index (HI) values from soil of all the orchards were found to be well below the respective threshold limit (1), suggesting that there is no immediate non-cancer threat arising from the contamination at all the orchards with metal(loid)s for children and adults. The highest cancer risk values (1.13E-02 for children and 1.25E-03 for adults) were estimated for Ni in the soil. Collectively, this study provides valuable information to improve the soil in the pistachio orchards to reduce metal(loid)s contamination and minimize the associated health risks to the population in the area.


Assuntos
Metais Pesados , Pistacia , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Metais Pesados/análise , Monitoramento Ambiental , Ecossistema , Cádmio , Chumbo , Poluentes do Solo/análise , Poluição Ambiental/análise , Medição de Risco , China
20.
Sci Total Environ ; 929: 172584, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641101

RESUMO

Salinization and sodication have become an important abiotic stress affecting soil fertility and crop production in the western of the Songnen Plain in Northeast China. And rice cultivation is considered as one of the most effective biological methods to reclaim saline-sodic soils and ensure food security. However, it is difficult to select the optimal measures to regulate rice growth for increasing yield, because the independent and comprehensive influences of the soil limitation factors on rice yield are not quantitatively evaluated. In this study, the hierarchical partitioning (HP) and the structural equation model (SEM) were used to quantitatively evaluate the influences of salinization parameters, salt ion concentrations and soil nutrients to identify the dominant limitation factors and obstacle mechanism for rice yield. The results showed that soil pH was the key index in salinization parameters, [CO32- + HCO3-] was the key index in salt ion concentrations and available nitrogen (AN) was the key index in soil nutrients to impact rice yield, which independent influences reached 53.7 %, 45.4 % (negative) and 53.2 % (positive), respectively. Soil pH was determined by [CO32- + HCO3-], and the negative effect of alkali stress on rice yield mainly caused by [CO32- + HCO3-] was greater than that of salt stress mainly caused by [Na+] in saline-sodic paddy fields. Among the soil chemical factors, soil pH and AN were the most important explanatory variables of rice yield in saline-sodic paddy fields, which standardized total effects were - 0.32 and 0.40, respectively. Furthermore, the AN showed a more significant negative correlation with soil pH and a higher yield-increasing potential in severe saline-sodic soils (9 ≤ pH < 10) than that in moderate saline-sodic soils (8 ≤ pH < 9). Therefore, decreasing [CO32- + HCO3-] and increasing the content of AN are key to improve rice yield in saline-sodic paddy fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...